# Prifysgol **Wrecsam Wrexham** University

## Module specification

When printed this becomes an uncontrolled document. Please access the Module Directory for the most up to date version by clicking on the following link: <u>Module directory</u>

| Module Code  | AUR495_AURH495                           |
|--------------|------------------------------------------|
| Module Title | Civil Engineering Design                 |
| Level        | 4                                        |
| Credit value | 10                                       |
| Faculty      | Faculty of Arts, Computing & Engineering |
| HECoS Code   | 100148                                   |
| Cost Code    | GABE                                     |

## Programmes in which module to be offered

| Programme title                                        | Is the module core or option for this programme |
|--------------------------------------------------------|-------------------------------------------------|
| BSc (Hons) Architectural Design Technology             | Option                                          |
| BSc (Hons) Building Surveying                          | Option                                          |
| BSc (Hons) Building Surveying Degree<br>Apprenticeship | Option                                          |
| BEng (Hons) Civil Engineering Degree<br>Apprenticeship | Core                                            |
| BSc (Hons) Construction Management                     | Option                                          |
| BSc (Hons) Construction Management                     | Option                                          |
| Degree Apprenticeship                                  |                                                 |
| BSc (Hons) Quantity Surveying                          | Option                                          |
| BSc (Hons) Quantity Surveying Degree                   | Option                                          |
| Apprenticeship                                         |                                                 |
| HNC Construction Technology                            | Option                                          |

## **Pre-requisites**

None

## Breakdown of module hours

| Learning and teaching hours                                          | 12 hrs  |
|----------------------------------------------------------------------|---------|
| Placement tutor support                                              | 0 hrs   |
| Supervised learning e.g. practical classes, workshops                | 6 hrs   |
| Project supervision (level 6 projects and dissertation modules only) | 0 hrs   |
| Total active learning and teaching hours                             | 18 hrs  |
| Placement / work-based learning                                      | 0 hrs   |
| Guided independent study                                             | 82 hrs  |
| Module duration (total hours)                                        | 100 hrs |



| For office use only   |                            |
|-----------------------|----------------------------|
| Initial approval date | 3 <sup>rd</sup> July 20224 |
| With effect from date | September 2024             |
| Date and details of   |                            |
| revision              |                            |
| Version number        | 1                          |

#### Module aims

The module aims to introduce the students to the basic principles of design and to develop conceptual and creative thinking. Students will work collaboratively, exploring concept design ideas, optioneering and the development of safe, practical, and sustainable solutions, at the initial stages of an infrastructure-based project.

#### Module Learning Outcomes - at the end of this module, students will be able to:

| 1 | Assimilate / work with information that may be incomplete and identify uncertainty and constraints.                                                                                                                                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Develop awareness of conceptual structural, infrastructure or geotechnical technologies<br>and design solutions/options to a Civil Engineering design problem; interpreting briefs;<br>identifying key issues and selecting solutions.                                                          |
| 3 | Appreciate how civil engineers design and construct infrastructure using appropriate technical literature, resources, materials, equipment, legislation, sustainably (Climate Change and United Nations Sustainable Development Goals) and with professional ethics at the core of the process. |
| 4 | Work collaboratively and use sketching, models, hand calculation, software, and other techniques to develop and communicate design thinking and solutions.                                                                                                                                      |

## Assessment

Indicative Assessment Tasks:

The module will be assessed through a series of tasks, forming a portfolio of evidence, relating to the undertaking of the development of a preliminary sustainable design solution to a client brief, to be augmented with sketches, models, hand calculations, simulations and a simple specification and risk register. (Indicative word count: 2,000 words)

Where group tasks are detailed, students will be provided with an individual marking criterion.

| Assessment<br>number | Learning<br>Outcomes to<br>be met | Type of assessment | Weighting (%) |  |
|----------------------|-----------------------------------|--------------------|---------------|--|
| 1                    | 1,2,3 & 4                         | Coursework         | 100%          |  |

## Derogations

None



# Learning and Teaching Strategies

The module will be presented to students through planned lecture series and programmed workshops and tutorials. An active and inclusive approach is used to engage students in the topics and will involve individual, group work and flipped learning experiences aligned to the university's Active Learning Framework (ALF). The approach offers students a flexible and adaptive learning experience that can accommodate a range of options that includes both on campus learning and remote learning where appropriate.

The Moodle VLE and other on-line materials and resources will be available to support learning. ALF offers a balance between the classroom elements and digitally enabled activity incorporating flexible and accessible resources and flexible and accessible feedback to support learning.

Students will work in groups to develop a sustainable, safe, and practical solutions to a design problem and use the workshop facilities to model their solution.

Progress reviews will be set up and managed by the student groups and classroom delivery will be supplemented with opportunities for guest lecturers to bring specific topic expertise into the delivery. Where possible, site visits will also be organised for students to meet professionals from across the sector and to visit sites either under construction or developed.

Tutorials – Close interaction with students ensuring that the work presented during lectures has been understood, with specific help being given to overcome any learning problems, should they occur.

## **Indicative Syllabus Outline**

The roles and responsibilities of the Civil Engineer. Client briefs. Identifying key requirements and Constraints. Rapid communication – sketching/ modelling/ simulation. Soil Mechanics and Environmental impact. Introduction to Earthworks and foundation selection. Temporary, permanent dewatering, ground treatment and slope stability techniques Techniques used in deep excavation and trenching works. Actions on structures, design standards and basic load analysis. Health Safety and Welfare. Technologies, Resources and Sustainability. Optioneering Design Solutions.

## Indicative Bibliography:

Please note the essential reads and other indicative reading are subject to annual review and update.

#### **Essential Reads**

Millais, M. (2017), *Building Structures: Understanding the Basics.* 3rd ed. London: Routledge.

#### Other indicative reading

Barnes, G.E. (2016), *Soil Mechanics: Principles and Practice.* 4th ed. London: Macmillan Education.



Cobb, F. (2015), *Structural Engineer's Pocketbook Eurocodes*, 3rd ed. Boca Raton, Florida: CRC Press.

Slade, R. (2016), Sketching for Engineers and Architect. London: Routledge.

Chartered Institute of Architectural Technologists <u>www.ciat.org.uk</u>

Chartered Institute of Building <u>www.ciob.org.uk</u>

Ordnance Survey www.ordnancesurvey.co.uk/

Institution of Civil Engineers www.ice.org.uk.

Royal Institute of British Architects www.architecture.com

Designing Buildings Wiki <u>www.designingbuildings.co.uk</u>

Institution of Structural Engineers (www.istructe.org.uk)

#### Other sources:

IHS Database www.ihsti.com

